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QUASIINTERPOLANTS AND APPROXIMATION POWER
OF MULTIVARIATE SPLINES

CARL de BOOR!

Center for the Mathem atical Sciences
610 Walnut Street

Madison WI 53705 USA

ABSTRACT. The determination of the approximation power of spaces of multivariate splines with
the aid of quasiinterpolants is reviewed. In the process, a streamlined description of the existing
quasiinterpolant theory is given.

' 1. Approximation power of splines
| e e
- I-begin with a brief review of the approximation power of univariate splines since the
techniques for its investigation are also those with which people have tried to understand
the multivariate setup. (That may in fact be the reason why we know so little about it.) +
~will then briefly discuss-three examples to illustrate some basic limitations of the standard
univariate approach. S0
Let S := Sk be the univariate space of splines of order k with knot sequence t.
This means that

-

S :=span®
with
n
® = (9i) iy
@i := M(-|t;,...,titx) the normalized B-spline for the knots ¢;,...,t;4k, and t := (tj);-‘:{‘
a nondecreasing real sequence. This definition of a spline space is taylor-made for the
consideration of its approximation power, since the B-spline basis

n
b:lo(n)—> S:ic— Pc:= Z<p;c(i)
i=1
is so well-behaved. (I have found it convenient to identify the sequence (¢y,...,@n) with
the map ¢ — )_; pic(i).) We consider specifically approximation from S to X := C([a,b]),
with
[a’b] = [tk’tn+l]

! supported by the National Science Foundation under Grant No. DMS-8701275 and
by the United States Army under Contract No. DAAL03-87-K-0030
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the interval of interest. In the corresponding norm

Il := {sup|f(2)l:a < z < b},

the basis (map) ® satisfies
121l = sup | 2<]|/liclleo = 1

(the result of the fact that the ¢; are nonnegative and sum to 1, i.e., form a partition of
unity). Since any linear map Q on X into § has the form Q =: }_; ;) for suitable linear
functionals J;, it follows that

1@ < Il == max | A]]. (1.1)

The ¢; have local support. Therefore, such a map Q is local to the extent that the A; are
local. In [B68,], I chose
supp A; C supp ¢; = [ti, titx],

and will take this to be the meaning of the statement ‘Q is local’. This implies, more
precisely than (1.1), that

NQ flltes i) S WAt eaontignl- (1.2)

The only additional feature needed to make Q a useful approximation scheme from
S is positive (polynomial) order where by the (polynomial) order of any such map Q I
mean the largest integer m for which

Q=1 onmey:= Spa'n(()j)j<m‘
(Strictly speaking, our @ is only defined on C([a,b]), hence I should talk about (7 <m)j(a,3)

instead of 7., but pedantry can be overdone.)
It follows that, for any f and any p € 7« and any I := [t;,ti41],

(f =N = (1 - S - P)),

hence

”(f - Qf)(I)H < “1 - Q“ ”(f - P)[t.'“-htiﬂ]”v
with ||1 — Q|| boundable by 1 + ||Q||, hence by 1 + ||A]|. Consequently,

dESt(f’ S) -<. (1 + “Q“) m?‘XdiSt(fs W(m)[tau-t.t.»u]‘ (13)

In particular, for a sufficiently smooth f,

dist(f, T<m)c.esn) = O D™ fIIR™),

therefore

dist(f,§) = O(IlQII IIP™ Al 1¢]™), (1.4)
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with
[t] := max At;.
1}

This formulation is careless. Offhand, the knot sequence t enters here not only in the
meshsize |t| but also in the ||Q|], since the actual construction of suitable @ is bound to
involve the knot sequence. There are many ways to construct local Q (choose, e.g., each );
to be evaluation at some point in the support of ;). There are also many ways to construct
Q of any order < k (choose, e.g., spline interpolation, or least-squares approximation from
S). The existence of a @ which is local and of order k was first proved, for odd k¥ and
for X = C*([a,d]) and without the aid of B-splines, in [Bi67], with a corrected version,
which also covered even k, to be found in [B68;]. For the present situation, i.e., for X =
C([a,b]), such Q were first constructed in [B68;]. The A; there were even chosen to be
linear combinations of point evaluations. Finally, it was shown there that the A; could be
so chosen that ||A]| was boundable independent of t (depending only on the order k of the
spline space). The essential part of the argument in [B68;] is the observation that the
B-spline basis is locally well conditioned, i.e., that

1/dy := il’tlf m'_in dist(;, span(@;) it tiea) > 0-

By Hahn-Banach, this entitles one to believe in the existence of A; on X dual to 9, i.e.,
satisfying Ajp; = 8;_j, with supp A; C [ti,ti+«], and with |[A]| < di. The resulting Q is
therefore not only of order k, it is actually the identity on all of §, i.e., it is a linear
projector onto S. Since m¢x C S, this provides the bound

dist(f, §) = O(di| D fIItI*, (1.5)

in which the order term O(-) is independent of the knot sequence t.
While [B68,] contains only a recipe for the construction of suitable A;, [BF73] estab-
lishes the formula . .
Az e Y (=D g(r) (DY f)(m) (1.6)
i<k
$i = (tigr = ) - (tigk—r — )/ (k= 1)!

for the dual functionals for the normalized B-splines (with 7; €]t;, t;+[ arbitrary). While
one may object to the use of derivative information here, the formula makes it easy to
extend the coordinate functionals of the B-spline basis to linear functionals with more
desirable characteristics (such as applicability to L, functions [B74], or employing only
function values [LS75]).

On the other hand, one may choose to ignore the formula (1.6) and choose A; explicitly
so that ¢ = 1 on 7.,,. This requires each A; to be an extension from 7., only, of the
linear functional which associates with each p € w,, its ith B-spline coefficient. If each
extension happens to have its support in an interval containing no knots in its interior and
if m = k, then the resulting @ will be the identity on all of S.

The specifics just discussed provide an instance of the following more abstract situation:
We wish to approximate from a given directed family (S,) of function spaces in C(G), for
some compact domain G C IR?. Specifically, we are interested in

dist(f, S»)
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as a function of the parameter h whose corresponding meshsize |h| we think of as going
to zero (and it is in this sense that we think of (S54) as ‘directed’). We are able to exhibit a
good quasiinterpolant @, of polynomial order m, i.e., a linear map @, on C(G) into
Sy of (polynomial) order m (meaning that Q, = 1 on 7<) which is uniformly local in
the sense that

(@ f)(2)! < constl| fig, ()

for all z € G, for some constants const and r, and with B.(z) the ball of radius 7 around
z. This implies the error bound

dist(f, S») < const{h[™

valid for all ‘sufficiently smooth’ f and so establishes the approximation order from (S})
to be (at least) m. Further, we are able to establish m to be the (exact) approximation
order from (S,) by exhibiting a particular ‘sufficiently smooth’ function f for which

dist(f, Si) # of|A|™).

Finally, we are able to choose @5 to be even a projector onto Sj.

This abstraction has motivated much of the work on the approximation power of mul-
tivariate splines. But, before starting that discussion here, I want to bring three cautionary
examples.

Example 1 This example appears in [DR8x]. It concerns the space S spanned by
the hZZ-translates of the piecewise linear function

. z+1, 0<z<h;
¥h 0, otherwise.

Thus §) consists of certain piecewise linear functions, with breakpoint sequence hZZ, but
the only constant function it contains is the constant 0. In particular, it is not possible to
construct a quasiinterpolant of positive order for it. Nevertheless, the approximation

Qnf =) on(- = )f()

JENZ

has the error

F=Quf=F=3 xn(-=NFG) + Y (xn=wn)- =),

JERZ JERZ

with x4 the characteristic function of the interval [0, k[, hence ||x» — ¢&]| = h. Therefore

If = Qufll < wys(h) + I £llk,

with w; the modulus of continuity of f. It follows that @, f converges to f uniformly in
case f is uniformly continuous and bounded.

This example strongly stresses that, in the earlier argument involving good quasiinter-
polants, positive order is too strong a condition. In fact, as is evident from the argument’s
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details, it is sufficient to demand that the good quasiinterpolant @, be of positive local
order m, meaning that

Qnf = f+OUIfIHA™)

on any ball of radius O(|h|) and for any f € 7<n. A sufficient condition for this is that
Qr = 1 on a D-invariant space F}, of entire functions which is locally close to n.,, in the
sense that its ‘limit at the origin’, (F%),, contains 7<,,. (Here, F| :=span{f| : f € F},
with f| the first nonzero term in the expansion f = fo+ fi + f2+--- of f into homogeneous
polynomials f; of degree j, all j.)

This example also illustrates the limits of the Strang-Fix conditions (see Sectiou 4). For
it shows that (Sj) has positive approximation order even though none of the S, contains
7. In fact, Ny S, = {0}.

Example 2 This disturbing example comes from [BH83]. The space § := 73 5 of
C?-cubics on the three-direction mesh A contains all cubic polynomials. It even contains
them locally in the sense that any cubic polynomial on one of the triangles of the partition
A can be extended to an element of S with compact support. However, the expectation
raised by this that the approximation order from (S4 := 73 ,,) is 4 will be disappointed.
There are polynomials in 74 for which dist( f, w:}‘h a) # o(k®). This indicates that it is not
sufficient to find out which polynomials are contained in S,. One needs to know that they
are contained in Sj in a local and stable way.

Example 3 In [BHS87], Hermite interpolation to planar curves by parametric piece-
wise cubic curves is investigated. The curves being piecewise cubic, one would expect an
approximation order of 4, i.e., an error of O(|h|*), with |h| a measure of the spacing of the
length of the cubic pieces. But, in fact, the scheme described there is shown to approximate
smooth curves (without inflection peints) to O(|k|®). Further, an example is given there
of a convex smooth curve with a flat spot to which the scheme approximates only within
O(}h|*). Finally, [S8x] shows that the scheme can be appropriately modified to approximate
to smooth curves with simple inflection points to within O(|4[€).

Now add to this the fact that the approximation scheme used is nonlinear. This
means that the basic trick of the above argument, viz. the introduction of a local polynomial
approximation to f, is not readily applicable. Still, the only ready means for estimating
approximation order is the introduction of a local polynomial approximation. Now add to
this the additional difficulty that there is no natural way of measuring the distance between
curves, other than their Hausdorff distance which is apt to set up a not very smooth map
between the points of the two curves.

The essential facts in the proof of the O(|h|®) error turned out to be that (i) the scheme
is local, and (ii) each cubic curve piece matches the given curve in six independent pieces of
information. This is sufficient to show that, for sufficiently small |h|, the difference between
each cubic piece and the given curve, measured in a suitable local direction (i.e., interpreting
both as (graphs of) functions in some suitable local coordinate system), is O(|k|®), with a
constant that can be bounded in terms of the local radius of curvature of the given curve.

All in all, it is again the use of a local and stable scheme of some positive order that
supplies the approximation order, but the argument is much harder, and is unsatisfactory
precisely because it takes recourse to functions. It seems pretty hopeless to try to settle
approximations of surfaces by surfaces in this way. Hence, although this is a meeting
on computing with curves and surfaces, I will stick to the approximation of multivariate
functions.




2. Quasiinterpolant construction for a scale

We now commence the discussion of quasiinterpolants and approximation order for multi-
variate spline spaces.
The simplest model for a family (S4) of approximating spaces is that of a scale, i.e.,

Sh = Uh(S)
for some fixed space S, with

onf:z— f(z/h)

and h > 0. The simplest nontrivial model for § investigated is that of the span of the
integer translates of a compactly supported function. This means that § is taken to be of
the form s

5(p) :=ranpx := {p*xc:ce€ CZ}.

This description makes use of the convolution

prei= 3 ol-— a)e(a)

a€Z4

of the compactly supported function ¢ with the complex-valued sequence or meshfunction
¢, ie.,c:Z* — C. Since pis compactly supported, the infinite sums @ *c converge trivially
uniformly on compact sets, and it is in this sense that I mean to interpret them.

I now consider the problem of constructing a good quasiinterpolant of polynomial order
m for S(p). Following [BH82], it has become customary to construct such a quasiinterpolant

in the form
Q:fr D w(--a)M(-+a) (2.1)
for some suitable local bounded linear functional A. With the notation

¥ fi=pxfi=) (- a)f(a)

for the semi-discrete convolution, which uses the helpful abbreviation

fl = f|zd,

and the notation
Af i Af(-+2),

we can write (2.1) more simply as
Q:f— o+ Af

With both A and ¢ compactly supported, the corresponding family Qn := gxQay/p is
uniformly local, hence establishes approximation order m for the scale (S(¢)4) provided
Q=1onm¢m.




Assuming that 7« C S(¢), this raises the question of just how one might construct
@ of the form (2.1) so that it is of polynomial order m. Consider the following slightly more
general problem: Construct A so that @ of (2.1) is the identity on the finite-dimensional
linear space F.

Such a space F’ must necessarily lie in §(¢). Further, since @ is to be the identity on
it, we might as well assume that F is E-invariant, meaning that

E°F C F VY(a€Z?),

with E the shift, i.e.,
E°f:zw f(z+ a).

For, the shift commutes with ¢+’ and with A, hence with @, and this implies that @ = 1 on
the smallest E-invariant space containing F. (This would imply that F is even D-invariant,
i.e., invariant under differentation, in case F C =; cf. [B87]).

It follows that F is also o#*'-invariant, as is any E-invariant subspace of S(¢), since

e f=f+o V(f=prceS(p) (2:2)

(Here are the details from [B87]: ¢+’ f = p*(py*xc) =@ *(cx@)) = (p*rc)*x ¢ = [+ ).
This means that the linear map
T := '~ *, \F

carries F' into itself.
Assume, in addition, that T is 1-1, hence invertible. Then any A which is an extension
of the linear functional

provides Q = 1 on F), since for such a A and for any f € F and any a € Z¢,

M(-+a)=(TTTEf)(0) = (E°T™' f)(0) = (T~ f)(a)

(using the fact that T commutes with E, hence so does T~!), and therefore Af = T~! f on
7%, consequently Qf = TT-!f = f.

If the translates of ¢ are linearly independent, then every f € F has a unique repre-
sentation in the form ¢ * ¢, hence @ = 1 on F only if A is an extension of the functional
Ao = [0]T~!. Here and below, [z] denotes the linear functional [z] : f — f(z) of point-
evaluation.

Since the action of @ on F is decided entirely by the values the linear functionals
f— Af(-+ a) take on F, it is easy to enlarge the class of available quasiinterpolants by
considering (as already cited earlier from the univariate literature, but see also [CD88] and
[BeR8x]), more generally,

Q:ifed ¢(-=a)rof
with A\, = [0]T"'E* =[a]T"! on F.

This leaves the question of just how one might actually construct suitable A. I take
up this question in Section 5, after a discussion of the Strang-Fix conditions. But it is
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convenient here to discuss quickly the special case when F is a polynomial space. Since, b:
(2.2), for any p € 7 N S(¢),

(p*'pzp*'saepch(a)-{»ﬂ'(desp,
a

T is 1-1if and only if 3 ¢(a) # 0. With this assumption, we may assume without further
loss of generality that ¢ is, in fact, normalized, i.e., that

Egp(a): 1. (2.4)

Then, the linear functional

ri=[les' = 3 ¢(-a)la]

is a finite weighted sum of function values and takes the value 1 at the constant function
1. This makes it possible to construct numerically its associated Appell sequence (py)
(see the appendix for complete relevant details on Appell polynomials). This sequence is
characterized by the fact that ¥(a, 3) TD%ps = 6,_3. This implies that p, € 75, hence the
sequence can be constructed numerically from the nimbers ¢| by recursion:

pa=[1" -3 7" ") ps. (2.5)

B<a

Here, [}* : z — z%/a! is the normalized power function. The Appell sequence is of
interest here since ([B87])

@+ pa = i
for all [J € S(¢). This implies that, for all such «,

’\OHO = PO,(O),

thus providing us with the matrix representation of Ag with respect to the normalized power
hasis (if any) for F. In particular, since [0]D*[}’ = 64, this provides immediately the
extension

A=Y pa(0V[0]D°

a
of /\0.

If F does not have a normalized power basis, or is not known exactly, then it is useful
to observe that T is the restriction of @ * to F', where we now interpret ¢| as the linear
functional / — ¥, ¢(a)f(a) = 7f(=-), hence (¢y+ /)(z) = 9 f(z—-) = ¥, f(z-a)¢(a)
and

@ *pa = [1° V(a€Z?).

The assumption (2.4) guarantees that @ is invertible on any E-invariant polynomial space
and, in particular, on any superspace m, for F. This implies that Z|a|<kl’a(0)[O]D"
extends [0])(w)*)|7!, hence also extends Ao.




This observatior also makes apparent the following comment concerning the numbers
Pa(0). If, as is certainly the case here, 7 is a compactly supported distribution, then (cf.
Appendix)

Pa = [- ~iD}*(1/-)(0) = 3_ 07" [0)[ - iDJ"(1/4-). (2.6)

YL
This means that R
pa(0) = [ - iD]°(1/4:)(0),
where, in our case,
$:=0=¢=3 wa)ie0

is a trigonometric polynomial, the symbol of . In particular cases, it might be easier to
compute the first few terms in the Taylor expansion of its reciprocal directly rather than
by the recurrence (2.5).




3. Characterization of local approximation order

The Strang-Fix conditions originally served (see [SF73] and references there) to characterize
the ‘controlled’ approximation order from the scale (S(¢)s). The surprising aspect of this
result was the claim that having n<, C S(¢) was necessary if (S(¢)x) was to have
approximation order m. The conclusion drawn from this (perhaps too eagerly) was that
we might as well restrict ourselves to piecewise polynomial . Yet, as the example from
[DR8x] quoted earlier (and, in fact, the results in [DR8x] on the approximation power of
S(¢) when ¢ is a piecewise exponential) indicate, there are perfectly reasonable ‘directed’
families (S)) with positive approximation power which contain not a single (nontrivial)
polynomial.

Following a suggestion by Babuska, [SF73] considered the more general problem when

§=5(2):=_ S(e)
PED
for some finite set ¢ of compactly supported functions. The basic, and perhaps surprising,
result is that, in effect, nothing new happens: The ‘local’ approximation order (defined
after the statement of the Theorem below) of such a scale is the best that can be had from

any S(%) with ¢ in
S(@)loc := {th* cp: Fsuppe, < 00}.
1’4

In other words, even for S(®), the ‘local’ approximation order is realizable by a quasiinter-
polant of the simple form 3 E~“)AE® discussed in the previous section. But, in contrast
to the case when & is a singleton, there is at present no computational procedure for the
construction of a suitable ¥ or for the determination of the approximation order.

The univariate case and the experience with the simple scale (S(¢)s) related in the
previous section gave rise to the hope that the approximation order of (S(®)4) would be
the largest m for which m¢p, C §(®). Even the determination of such an m would be
nontrivial, but less involved than finding a best-possible . Unfortunately, any such hope
was dashed in [BH83] where it is shown that the approximation order of the scale obtained
from the space of C!-cubics on the three-direction mesh is only 3 even though its subspace
S(®) with & consisting of the two box-splines Mj2; and M;;; contains 7«y.

[SF73] as well as [DM84] speak of ‘controlled’ L,-approximation order and mean by
that the largest m so that, for all sufficiently smooth functions f,

dist p(f, S(®)]) < const|| D™ fl|5(Bra(G)) h™,

with

S(@). = {on )_¢xcy: Y licglly < const||fllo( Bra(G))/h% 7} (3.1)

pED pED

for some const and r independent of h or f. Here, the distance is to be measured in the
p-norm on the underlying domain G. Jia gave an example in [J84] to show that, contrary
to the assertions in [SF73], the ‘controlled’ approximation order defined this way for the
case G = IR? cannot be characterized by the Strang-Fix conditions. Jia's example does
not contradict the claims made in [DM84] (in reliance on [SF73]) since there the above
‘controlled’ approximation order condition is assumred to hold for all domains G, with const
and r also independent of 5. In fact, these claims are verified in [BJ85] where the following
corrected version of the Strang-Fix theorem is proved.
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(3.2)Theorem. Let & be a finite collection of compactly supported essentially bounded
functions on R®. Then the following conditions are equivalent.
(i) For some sequence (¥a)ja|<m in span @,
(ia) %o(0) =1, $ = 0 on 27Z*\0;
(ib) Tpeol=iDVPacp =0 on 20Z4\0 for 0 < |a| < m.
(it} For some sequence (4 )|aj<m in span®,

0° = taep (P €mciey  V(af < m). (3.3)

BLa
(iii) For some ¢ € S(®)'°c,
0% —v«"[1* € m¢a Y(ja| < m). (3.4)

(iv) For all p € [1,00], ¢ provides local L,-approximation order m.
(v) For some p € [1,], ® provides local Ly-approximation order m.

Several comments are in order.
The statement ‘@ provides local L,-approximation order m’ is meant as an abbreviation

for the condition that, for all f € L;‘(IRd).

dist ,(f, S(®){) < const||D™ f||, A™

with
5(@)‘,{ 1= {Oh Z @ * ¢y dist(jh,supp f) > r = ¢ (j) = 0} (3.5)
pED
and for some const and r independent of h or f. Here, all norms are the L,-norm on
IR?. Note that the claimed equivalence between (iv) and (v) makes it possible to drop the
qualifier L,- and talk simply of the local approximation order provided by ®.
The proof of (i)==(ii) uses Poisson’s summation formula, in the manner detailed in the
next section, the proof of (ii)==(iii) obtains ¥ in the form kam ¥ * c3 with ¢ finitely

supported sequences for which ] xcs = [J° for all 8 < v := (m,...,m), while the proof of
(iii)==(iv) uses the material detailed in the preceding section. The main point of [BJ85] is
a proof of the implication (v)==(i) which had been missing in the earlier literature. The
argument uses a smooth, compactly supported function f whose Fourier transform satisfies

-~

f0y=1,  D°f(z/h) = O(h™) ¥(z € RU\0, |a] < m). (3.6)
(The specific function f used happens to be the d-fold tensor product of the centered B-
spline of order m+ 1, hence its Fourier transform is the d-fold tensor product of Whittaker's
sinc function t — sin(¢/2)/{’/2), but such detail doesn’t matter.) Condition (v) provides
an approximation f, = 7, nga * c,'}, to f which has compact support, uniformly in h. and
for which
en = f— frn=0(h™)

in whatever p-norm we happen to use. It follows that its Fourier-Laplace transform €: z —
Jga €77 €(z)dz satisfies

[€(z)] = O(h™) uniformly on [|Im z|| < const
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for some const, hence Cauchy’s formula supplies the estimate
| D%€l|oo(IR?) < const A™. (3.7)
Consequently, the function
Fu=2) " @(h)ol(h)
7
satisfies the conditions (3.6) (with f replaced by fr) as h — 0. Here,

vg iz he Ze“’jcg(j)
J

is 2w-periodic, therefore

[ - D) fa(2rj/h) = KIS S [ - iD}P @2 )] - iD}" P vi(0).
¢ B

Combining (3.6) and (3.7), we conclude that

lim > @(0)vs(0) =1 (3.8)
4

and, for all j € Z"\O and all |a| < m,

lim =3 [ - iD)P@(2nj)[ - iD]* P uli(0) = 0. (3.9)
v B

h—0

Define now

= Z PWo,vs
@

with w taken from the orthogonal complement WL of the space W of all ‘sequences’

w = (w, ) for which
h—-oz Z W[ = iD] v, 50

¢ lvl<m

We may choose w SO that @o(O) = 1, since ;ZO( 0)=0forall w Ll W would imply that the
sequence (@, 7)— ¢#(0)0, isin WLL = W, thus lim,_g Z @(0 (0) = 0 and this would

contradict (3.8). It fOUOWS from (3.9) that the sequence (<,.9,7) ~ [ -=iD]*7"@(27j) is in
W for all |a| < m and all j € 2rZ2%\0, hence

Y [-iDP¥ap(2mi) =3 [-iD) Y (27j)wyacs =0,
B J¢j @

and this finishes the proof.

The proof (i)=> (ii) == (iii) supports the stronger claims that the displayed functions
in (ii) and (iii) are necessarily in T,.
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P

The condition actually used in [SF73] instead of (ii) is the existence of some sequence
(¥a)|aj<m in span @ for which

1°= > vasll’ Vo <m) (3.10)

fLa

Although seemingly stronger, this is actually equivalent to (i), as can be seen directly as
follows: There is a unique linear map F on 7., which carries []* to 35, Ya-p * I°.
By (ii), F carries T into itself and is degree-preserving, hence must be 1-1, hence must
be invertible. This is all happening on a finite-dimensional linear space, therefore p(F)=1
for some polynomial p. But, for any polynomial p, p(F’) carries [0° to X pca Xa-s *! []ﬂ
for certain x., expressible as linear combinations of the .. -

The theorem characterizes the local approximation order from the scale (S(®)s)). The
only results available so far on the approximation order itself have been obtained by produc-
ing an upper bound on the approximation order which happened to coincide with the local
approximation order. This is so when & consists of a single box spline (cf. [BH82]), and is
often so when ® consists of all the different box splines in 7r,’:' s With A the three-direction
mesh (cf. [J86)).
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4. The Strang-Fix conditions

The Strang-Fix conditions arose in the characterization of the approximation power of the
scale (Si) when § = S(). According to [SF73; Theorem I] and roughly speaking, the scale
(S(¥)n) has approximation order m if and only if 7<;m C S(). In the proof, the basic tool
is the Fourier transform

P& /e"fch(z)d:r,

with £z := (£,z) = Zj £(7)T(j) the scalar product. Since ¢ has compact support, § is an
entire function. As shown in [SF73], the following conditions

#(0)=1 (4.1a)

V(8<a) DP$=0 on 2r7Z°\0, (4.1b)

called the Strang-Fix conditions of index « these days (cf., e.g., [C88]), imply that
7o i=span (P)pga C S(p)-
[DMS83] prove that, more generally, any affinely invariant subspace P of
{p€ 7 :p(D)@=0on 2rZ*\0} (4.2)
is necessarily in S(y). This is indeed a generalization since the polynomial space 74 is, in

particular, affinely invariant, i.e., scale- and translation-invariant. Their proof, as does the
argument in [SF73], involves the semidiscrete convolution

o fi=px(f)= D ¢(--B)f(B)
pezs
in which
f| = flzd.
It is observed in [B87] that the assumption of affine invariance can be weakened to
E-invariance, i.e., to the assumption that

V(a € Z%) E°P C P,

with E the shift, i.e.
E°f:zw f(z+ a).

Explicitly, [B87; Prop.2.2] proves that, more generally (and without the assumption that
2(0) # 0), o

{pem:p+'p=p+y} (4.3)
is the largest E-invariant subspace of

M, :={penr:p(-iD)@ = 0 on 2rZ%\0}.
Note that the possible lack of scale-invariance (cf. [R8x] for a ¢ for which (4.3) fails to be
scale-invariant) forces the switch from p(D) in (4.2) to p(—iD) here. Note further that (4.3)
is the collection of polynomials in the kernel of the commutator of ¢, i.e., of the map
frlelfl=e f-f¥e
singled out in [CIJW87] as an object of interest.
Finally, [BR8x] prove the following more general and suggestive result, in which
Te

is, by definition, the largest E-invariant subspace of II,,.
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(4.4)Proposition. For any compactly supported (measurable) function ¢ on IR and any
f € =, the following conditions are equivalent:

(a) f €7y

(b) ¥ f=0xf;

(c) ¢#fen.

Proof. [BR8x] use Poisson’s summation formula (as did [SF73], [DM83], etc).
But since the proposition impose- no continuity requirement on ¢, the formula cannot be
applied directly. In this sense, the argument for the corresponding Proposition 2.2 in [B87]
is incomplete. This technical point is handled in [BR8x] by proving (b) to hold when applied
to test functions. This makes the proof valid even when ¢ is only a compactly supported
distribution. Here is the proof, for completeness.

For any compactly supported test function u,

(p* fw) =" fla)e(- — a)(u) =: > _ P(a),

with ¥ : 2 — f(z)p(- — z)(u) also a compactly supported test function, and therefore, by
Poisson’s summation formula,

(0 Fw) =) d(2ra), (4.5)
with )
$ = f(~iD)(p(~")a). (4.6)
On the other hand,
(9 + f)(u) = / [ et =) @)z utw)dy = $0). (4.7)

If now f € r,, then DPf € 11, for all 3, hence &(271'&) = 0 for all & € ZZ%\0 since, by
(4.6) and the Leibniz-Hérmander identity (cf. Appendix),

W(€) = Y (DPf(~iD)) ¢(=£) (~iD)’u(€)/B" (4.8)
g

Therefore, from (4.5) and (4.7),

(¢« N)(u) = 9(0) = (¢ * f)(u),

showing that (a) == (b). The implication (b) = (c) is trivial since ¢ x # C 7. Finally, if
(c) holds, then the linear functional @ — (@ *' f)(u) has support only at the origin. Since
the collection of linear functionals {u — (—iD)%%(2ra): B,a € Z°} is globally linearly
independent over the space of compactly supported test functions, this implies with (4.5)
and (4.8) that f and all its derivatives must belong to II,, thus showing that (¢) =
(2). [ )

One recovers [B87;Prop.2.2] from (4.4)Proposition with the aid of the observation
(already made there) that ¢ *' f and f +' ¢ agree on ZZ% and f *' @ is a polynomial in case
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f € &, hence agrees with ¢ *' f iff ¢ ¥’ f € x. More importantly, (4.4)Proposition brings in
an important point that simplifies considerably the construction of quasiinterpolants, viz.
the equality

e = px onm, (4.9)

which suggests the construction of quasiinterpolants of the form
Qui=gppr:fr Y o(-~a)ufla—-) (4.10)
[ 4

with the compactly supported distribution p chosen so that u# represents the inverse of @x
on m,. I pursue this point in the next section.

As pointed out in [BR8x], (4.4)Proposition has a ready extension to exponential f,
i.e., to

f € Expp := Zegw

8eT

for some finite T € C¢, with eg : z — €. It is natural to consider such exponential f. e
the essential part of the space

H(g):= {f € 5(¢): f entire }
consists of exponentials. I will use the abbreviation

O(y)

for the spectrum of H(¢), i.e., the smallest T for which H(p) C Expy. The appropriate
generalization of 7, is the space

H«, = Z 697\’¢(9),

0€0(v)

with 7,() the largest E-invariant subspace of

N,(8):={pen:p(-iD)p=0o0n — i+ (2rZ*\0)}.

(4.11)Theorem [BR8x]. Let ¢ be a compactly supported function, and let f € Expy.
Consider the following conditions:

(a) f € Hy;
(b) @* f=pxf
(c) ¢+ fe€Expr.
Then (a) => (b) = (c). If, in addition,
(T = T)n2riZ* = {0}, (4.12)
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then (c) => (a) as well.

Here is a proof outline: The implication (a)=(b) follows from (4.4)Proposition by
shifting in the frequency domain, using the fact that (a) implies that T C ©(¢p), hence that
f= 2069(«.9) fo with fy = egqy for some g4 € m,(8). It follows that each such gs lies in
Te_,(0). Therefore, by (4.4)Proposition,

w*' fo = eg((e—op) *' 95) = €n ((e~p) ¥ qs) = P * f3

for each 8 € ©(y), and (b) follows.

For the implication (¢) = (a), decompose f into its separate exponential terms,
f = 2 4er fo, With fp = e9gs. Assuming (4.12) and (c), it is possible to provide, for each
6 € T, a polynomial p = py so that p(E)f = fs and p(E)(¢ *' f) € egr. Therefore

est S p(E) (o f)=p* p(E)f = ¢+ fo

But this says that r := e_g(@ *' fy) € 7, i.e., (e_sp) *' g¢ = r € 7, therefore gy € 7._,,(0)
by (4.4)Proposition, ie., fs € H,. &

The assumption (4.12) is essential here: If 8,9 € T and § — 9 € 2riZ2%\0, then
f := egq — egq vanishes on ZZ° for any g € 7, hence ¢ *' f = 0, yet f # 0, hence does not
belong to H, if ¢ has sufficiently high degree.
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5. The construction of quasiinterpolants for S(¢)

This section follows closely the development in [BR8x].
In Section 2, we discussed the construction of F-quasiinterpolants for S() in the form

e+ A (5.1)

with Af : 2+ Af(- + 2) and F an E-invariant, hence @#*'-invariant subspace of S(y). I
pick up on this discussion now in order to give a unified view of the various concrete quasi-
interpolants already available in the literature (cf., e.g., [SF73],[BH82], [DM83], [DM84],
[DM85], [DM8x], [B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>